4.5 Article

Mechanisms of pre-attachment Striga resistance in sorghum through genome-wide association studies

Journal

MOLECULAR GENETICS AND GENOMICS
Volume 297, Issue 3, Pages 751-762

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00438-022-01882-6

Keywords

Abscisic acid; Gibberellic acid; GWAS; Hormonal crosstalk; Parasitic plants; Pre-attachment resistance; Sorghum; Striga; Strigolactone

Funding

  1. National Academies of Science (NAS) under the Partnerships for Enhanced Engagement in Research (PEER) program [PGA-2000008288]
  2. United States Agency for International Development [AID-OAA-A-11-00012]
  3. NAS

Ask authors/readers for more resources

Witchweeds greatly hinder crop production in Africa. The study found that hormones such as abscisic acid and gibberellic acid play important roles in the germination of witchweed seeds. The findings also suggested that other hormones have effects on seed germination. These findings have significant implications for controlling crop pathogens in Africa.
Witchweeds (Striga spp.) greatly limit production of Africa's most staple crops. These parasitic plants use strigolactones (SLs)-chemical germination stimulants, emitted from host's roots to germinate, and locate their hosts for invasion. This information exchange provides opportunities for controlling the parasite by either stimulating parasite seed germination without a host (suicidal germination) or by inhibiting parasite seed germination (pre-attachment resistance). We sought to determine genetic factors that underpin Striga pre-attachment resistance in sorghum using the genome wide association study (GWAS) approach. Results revealed that Striga germination was associated with genes encoding hormone signaling functions, e.g., the Novel interactor of jaz (NINJA) and, Abscisic acid-insensitive 5 (ABI5). This pointed toward abscisic acid (ABA) and gibberellic acid (GA) as probable determinants of Striga germination. To test this hypothesis, we conditioned Striga using: ABA, ABA + its inhibitor fluridone (FLU), GA or water. Unexpectedly, Striga conditioned with FLU germinated after 4 days without SL. Upon germination stimulation using sorghum root exudate or the synthetic SL GR24, we found that ABA conditioned seeds had above 20-fold reduction in germination. Conversely, FLU conditioned seeds recorded above 20-fold increase in germination. Conditioning with GA reduced Striga seed germination 1.5-fold only in the GR24 treatment. Germination assays using seeds of a related parasitic plant (Alectra vogelii) showed similar degrees of stimulation and reduction of germination by the hormones further affirming the hormonal crosstalk. Our findings have far-reaching implications in the control of some of the most noxious pathogens of crops in Africa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available