4.7 Article

Temperature Sensitivity of Microbial Litter Decomposition in Freshwaters: Role of Leaf Litter Quality and Environmental Characteristics

Journal

MICROBIAL ECOLOGY
Volume 85, Issue 3, Pages 839-852

Publisher

SPRINGER
DOI: 10.1007/s00248-022-02041-5

Keywords

Climate change; Activation energy; Resource quality; Microbial activity; Temperature; Streams

Ask authors/readers for more resources

This study examined the temperature sensitivity of plant litter decomposition in lotic ecosystems and found that factors such as leaf quality and microbial community type can influence the response. The results indicate that the acceleration of litter decomposition by global warming is shaped by local factors.
Ongoing global warming is expected to alter temperature-dependent processes. Nevertheless, how co-occurring local drivers will influence temperature sensitivity of plant litter decomposition in lotic ecosystems remains uncertain. Here, we examined the temperature sensitivity of microbial-mediated decomposition, microbial respiration, fungal biomass and leaf nutrients of two plant species varying in litter quality. We also assessed whether the type of microbial community and stream water characteristics influence such responses to temperature. We incubated alder (Alnus glutinosa) and eucalypt (Eucalyptus globulus) litter discs in three streams differing in autumn-winter water temperature (range 4.6-8.9 degrees C). Simultaneously, in laboratory microcosms, litter discs microbially conditioned in these streams were incubated at 5, 10 and 15 degrees C with water from the conditioning stream and with a water control from an additional stream. Both in the field and in the laboratory, higher temperatures enhanced litter decomposition rates, except for eucalypt in the field. Leaf quality modified the response of decomposition to temperature in the field, with eucalypt leaf litter showing a lower increase, whereas it did not in the laboratory. The origin of microbial community only affected the decomposition rates in the laboratory, but it did not modify the response to temperature. Water quality only defined the phosphorus content of the leaf litter or the fungal biomass, but it did not modify the response to temperature. Our results suggest that the acceleration in decomposition by global warming will be shaped by local factors, mainly by leaf litter quality, in headwater streams.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available