4.7 Article

Insight into numerical solutions of static large deflection of general beams for Mechanisms

Journal

MECHANISM AND MACHINE THEORY
Volume 172, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mechmachtheory.2022.104757

Keywords

Compliant Mechanisms; General planar beams; Euler-Bernoulli Beam theory; Nonlinear static modeling; Ordinary differential equations (ODE); Boundary value problems (BVP); Numerical methods

Ask authors/readers for more resources

In this paper, commonly-used beam modeling methods in Compliant Mechanisms (CMs) are reviewed, with a focus on solving the boundary value problem of an ordinary differential equation. Numerical methods for straight beams and initially curved beams are introduced, and the feasibility of synthesizing CMs using these methods is demonstrated through the modeling of representative revolute mechanisms. Error analysis confirms the effectiveness of these numerical methods.
Compliant Mechanisms (CMs) have been a hot research spot in recent years due to their distinguished mechanism concept from conventional rigid-body mechanisms: CMs can transfer motion, force, and energy only through the deflection of flexible components. Therefore, the accurate and efficient kinetostatic modeling for these elementary flexible components plays a rather important role regarding conducting synthesis of a studied compliant mechanism. In this paper, we have reviewed the commonly-used beam modeling methods in CMs, most of which are essentially dedicated to handling geometrically nonlinear Euler-Bernoulli beam theory. Mathematically speaking, this beam model is essentially a boundary value problem (BVP) of an ordinary differential equation (ODE). We then introduced certain commonly used numerical methods for BVPs to solve the problem where straight beams and circular initially curved beams (ICBs) are studied as two example cases. We have also demonstrated the detailed derivation of these methods and the numerical results along with the corresponding insights on them as well. Besides, we have modeled 2 representative revolute mechanisms (straight-beam-based cross-axis compliant revolute joint and circular-beam-based compliant revolute joint) to prove the feasibility of synthesizing CMs using these numerical methods. Error analysis is presented thereafter, which also confirms the effectiveness of these numerical methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available