4.7 Article

Aircraft robust data-driven multiple sensor fault diagnosis based on optimality criteria

Journal

MECHANICAL SYSTEMS AND SIGNAL PROCESSING
Volume 170, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2021.108668

Keywords

Multiple-Fault Diagnosis; Data-Driven; Aircraft; Directional residuals; Optimal robust residuals; Analytical Redundancy

Funding

  1. University of Perugia [RICBA18MR, RICBA20MR]

Ask authors/readers for more resources

A robust data-driven scheme for Fault Detection, Isolation and Estimation of multiple sensor faults is proposed and validated. The scheme achieves robustness to modeling uncertainty and noise through optimized design. The proposed scheme is applied to a set of 8 sensors of a semi-autonomous aircraft and compared with other multiple Fault Diagnosis schemes.
A general robust data-driven scheme for the Fault Detection, Isolation and Estimation of multiple sensor faults is proposed and validated using multi-flight data records. Robustness to modelling uncertainty and noise is achieved through an optimized data-driven design of the three blocks that constitute the scheme. First, a robust Fault Detection (FD) filter given by the linear combination of previously identified Analytical Redundancy Relationships (AARs) is derived as the solution of a multi-objective optimization where the minimum fault sensitivity is maximized while the standard deviation (STD) of the filtered error, in nominal condition, is minimized. Then, a Fault Pre-Isolation (FPI) block is introduced to select a restricted number of sensors containing with high likelihood the subset of the faulty sensors. In this phase, robustness is achieved through the data-driven design of a redundant number of Multiple-ARRs and a voting logic. Finally, the robust Fault Isolation (FI) is achieved relying on the design of a large collection of additional AARs whose fault signatures are specifically designed to optimize, at the same time, noise immunity while maximizing the decoupling of the (pre-isolated) fault directions. A procedure based on fault amplitude reconstruction is proposed to isolate the set of faulty sensors sequentially. The proposed scheme has been applied to the design of a multiple Fault Diagnosis scheme for a set of 8 sensors of a semi-autonomous aircraft basing on multi-flight data. Validation results are compared with state-of-the-art multiple Fault Diagnosis schemes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available