4.7 Article

Modulating the Rate of Controlled Suzuki-Miyaura Catalyst-Transfer Polymerization by Boronate Tuning

Journal

MACROMOLECULES
Volume 55, Issue 9, Pages 3476-3483

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.2c00047

Keywords

-

Funding

  1. Creative Research Initiative Grant through NRF, Korea

Ask authors/readers for more resources

By modulating boronates, the rate of the Suzuki-Miyaura CTP (SCTP) reaction can be controlled, achieving precision synthesis of polymers.
Despite the remarkable breakthroughs in the catalyst-transfer polymerization (CTP) technology in the precision synthesis of conjugated polymers, modulating the monomer reactivity is still challenging. We report that, by boronate tuning, we can modulate the rate of the Suzuki-Miyaura CTP (SCTP) of 3-hexylthiophene with high control. First, cyclic boronate esters showed different polymerization rates depending on their diol subunit structure. Additionally, the rates of the N-coordinated boronates were differentiated by tuning their O- or N-substituents. Notably, the origin of the difference in reactivity could be explained by the N -> B bond lengths. The detailed structural analysis of the resulting polymers by H-1 nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) spectrometry showed that the slower and more stable boronate monomers were less prone to homocoupling and protodeboronation, thereby producing poly(3-hexylthiophene) (P3HT) with higher control (i.e., molecular weight, dispersity, end-group fidelity, and yield). By rational optimizations to suppress homocoupling and protodeboronation, well-defined P3HT were prepared at various monomer-to-initiator ratios (M/I ratios).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available