4.5 Article

Exploring value of CT coronary imaging combined with machine-learning methods to predict myocardial ischemia

Journal

JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY
Volume 30, Issue 4, Pages 767-776

Publisher

IOS PRESS
DOI: 10.3233/XST-221160

Keywords

Heart; machine learning; computed tomography angiography (CTA); myocardial ischemia

Ask authors/readers for more resources

This study established a machine learning model based on coronary computed tomography angiography (CTA) images to evaluate myocardial ischemia in patients with coronary atherosclerosis. The neural network model demonstrated the best predictive performance.
PURPOSE: To establish a machine-learning (ML) model based on coronary computed tomography angiography (CTA) images for evaluating myocardial ischemia in patients diagnosed with coronary atherosclerosis. METHODS: This retrospective analysis includes CTA images acquired from 110 patients. Among them, 58 have myocardial ischemia and 52 have normal myocardial blood supply. The patients are divided into training and test datasets with a ratio 7 : 3. Deep learning model-based CQK software is used to automatically segment myocardium on CTA images and extract texture features. Then, seven ML models are constructed to classify between myocardial ischemia and normal myocardial blood supply cases. Predictive performance and stability of the classifiers are determined by receiver operating characteristic curve with cross validation. The optimal ML model is then validated using an independent test dataset. RESULTS: Accuracy and areas under ROC curves (AUC) obtained from the support vector machine with extreme gradient boosting linear method are 0.821 and 0.777, respectively, while accuracy and AUC achieved by the neural network (NN) method are 0.818 and 0.757, respectively. The naive Bayes model yields the highest sensitivity (0.942), and the random forest model yields the highest specificity (0.85). The k-nearest neighbors model yields the lowest accuracy (0.74). Additionally, NN model demonstrates the lowest relative standard deviations (0.16 for accuracy and 0.08 for AUC) indicating the high stability of this model, and its AUC applying to the independent test dataset is 0.72. CONCLUSION: The NN model demonstrates the best performance in predicting myocardial ischemia using radiomics features computed from CTA images, which suggests that thisMLmodel has promising potential in guiding clinical decisionmaking.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available