4.4 Article

Experimental Investigation of Enhanced Grooves for Herringbone Grooved Journal Bearings

Journal

Publisher

ASME
DOI: 10.1115/1.4053978

Keywords

bearing design and technology; gas (air) bearings; hydrodynamic lubrication

Funding

  1. Swiss National Science Foundation [PYAPP2_154278/1]

Ask authors/readers for more resources

This paper presents a theoretical and experimental investigation of the potential of enhanced groove geometries in stabilizing a Herringbone Grooved Journal Bearing (HGJB) supported rotor. The results show a significant increase in instability onset speed when enhanced groove geometries are used compared to classical grooves, indicating the effectiveness of enhanced groove geometries in stabilizing HGJBs. The study also suggests that a rotor with a varying groove angle along the rotor axis performs similarly to fully enhanced grooves, providing a good trade-off between performance increase and design cost.
This paper presents the results of a theoretical and experimental investigation of the potential of enhanced groove geometries to increase the bearing clearance of a Herringbone Grooved Journal Bearing (HGJB) supported rotor. The theoretical study investigates various groove geometries of different complexities and their effect on the stability threshold of a particular rotor geometry. The theoretical results obtained from a rigid-body rotordynamic model suggest an increase of more than 300% in instability onset speed when enhanced groove geometries are used compared to a classical, helically grooved rotor featuring the same radial bearing clearance. As part of the experimental investigation, one rotor shaft with classical grooves, representing the baseline rotor, and four rotors of identical diameter and clearance, but featuring enhanced grooves of varying degrees of complexity, were manufactured and experimentally tested. Good agreement between the experimentally determined speed of instability onset and the prediction was found for the investigated enhanced groove patterns. Experimental results of the classical rotor suggest the onset of instability to occur at a rotational speed of 56 krpm, whereas a speed of 180 krpm was achieved when enhanced groove geometries were applied to the rotor, which agrees very well with the theoretically predicted results and confirms the potential of enhanced groove geometries to stabilize HGJBs. Furthermore, the rotor featuring only a varying groove angle along the rotor axis was found to perform similarly to fully enhanced grooves of varying groove width, depth, and angle, hence representing a good trade-off between performance increase and design cost.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available