4.6 Article

Material characterization and simulation for soft gels subjected to impulsive loading

Publisher

ELSEVIER
DOI: 10.1016/j.jmbbm.2022.105293

Keywords

Soft gel; Characterization; High strain rate; Finite element; Viscoelasticity

Funding

  1. Office of Naval Research (ONR) through NRL's Basic Research Program

Ask authors/readers for more resources

This study developed a new impact experiment method to efficiently determine mechanical properties of soft gels. The integrated approach of experiment and simulation was used to calibrate material behavior parameters, and its effectiveness was verified.
For impact and blast experiments of traumatic brain injury (TBI), soft gel materials are used as surrogates to imitate the mechanical responses of brain tissue. To properly model a viscoelastic gel brain in a surrogate head using a finite element (FE) model, material parameters such as the shear moduli and relaxation time at high strain rates are required. However, such information is scarce in the literature and its applicability for a range of dynamic conditions is unclear. We used an integrated experiment and simulation approach to efficiently determine mechanical properties of soft gels at finite strains, as well as over a wide range of strain rates. A novel impact experiment using a gel block was developed to capture the high strain rate behavior by maximizing the inherent shear wave motion at different impact conditions. A corresponding computational model was used to simulate the gel dynamics of the impact. Parametric simulations utilizing optimization and correlation analyses were used to calibrate multiple material parameters in the nonlinear viscoelastic model to the experimental data. The optimal parameters for gels, including Sylgards 184, 3-6636, and 527, were found. We ascertained the initial shear stiffening effect in gels at high strain rate loadings experimentally and incorporated this effect in the simulation. We have verified the integrated approach by comparing the material properties of the gels with analytical results based on shear wave propagation. This study provides a new approach to calibrate the material behavior of soft gels under high strain rate loading conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available