4.5 Article

Distal Small Bowel Resection Yields Enhanced Intestinal and Colonic Adaptation

Journal

JOURNAL OF SURGICAL RESEARCH
Volume 273, Issue -, Pages 100-109

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jss.2021.11.015

Keywords

Short bowel syndrome; Intestinal adaptation; Colonic adaptation; Small bowel resection; Ileocecal resection; Intestinal failure

Categories

Funding

  1. NIH [T32 DK077653, RO1 DK104698, T32 DK007120]

Ask authors/readers for more resources

This study optimized a highly selective vascular approach to murine ileocecal resection (ICR), which showed superior colon preservation and enhanced remnant intestine epithelial adaptation compared to proximal small bowel resection (SBR). The findings suggest that ICR is associated with greater colonic adaptation and unique plasticity toward an intestinal phenotype.
Background: Murine ileocecal resection (ICR) has been used to investigate intestinal adaptation. The established model often includes the sacrifice of significant length of the proximal colon. Here, we optimized a highly selective vascular approach to the ICR, with primary jejunal-colic anastomosis yielding maximal colonic preservation. Materials and methods: Forty C57BL/6 mice underwent a highly vascularly selective ICR. The terminal branches of the ileocecal artery are isolated apart from the mesenteric branches supplying the small bowel to be resected. The distal 50% of small bowel and cecum are resected; a primary jejuno-colonic anastomosis is performed. Animals were sacrificed at postoperative weeks 2 (n = 10) and 10 (n = 29). Proximal 50% small bowel resection (SBR) with jejuno-ileal anastomosis was also performed for comparison. Results: The entire colon (with exception of the cecum) was preserved in 100% of animals. Ninety-seven percent of animals survived to postoperative week 10, and all exhibited structural adaptation in the remnant small intestine epithelium. Crypts deepened by 175%, and villi lengthened by 106%, versus 39% and 29% in the proximal SBR cohort, respectively. Colonic proliferation, structural adaptation, and functional adaptation (measured by p-histone 3, luminal-facing apical crypt border size, and sucrase isomaltase, respectively) were increased in ICR compared with proximal SBR. Conclusions: Highly selective isolation of the cecal vasculature allows for greater colon preservation and yields enhanced remnant intestine epithelial adaptation. ICR is also associated with greater colonic adaptation and unique plasticity toward an intestinal phenotype. These findings underscore major differences between resection sites and offer insights into the critical adaptive mechanisms in response to massive intestinal loss. (c) 2021 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available