4.5 Article

Contribution of ionic interactions to stationary phase selectivity in hydrophilic interaction chromatography

Journal

JOURNAL OF SEPARATION SCIENCE
Volume 45, Issue 17, Pages 3264-3275

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jssc.202200165

Keywords

column selectivity; hydrophilic interaction chromatography; ionic interactions; mixed-mode stationary phases; similarity factors

Ask authors/readers for more resources

By comparing 19 different hydrophilic interaction chromatography columns, it was found that the selectivity differences strongly depended on ionic interactions. Columns with neutral stationary phases showed more similar selectivity compared to those with cation or anion exchange activity. Zwitterionic columns exhibited some degree of cation or anion exchange activity, but to a lesser extent than silica and amine-containing phases.
We compared the separation selectivities of 19 different hydrophilic interaction chromatography columns. The stationary phases included underivatized silica and hybrid particles, cyano-bonded silica, materials with neutral ligands such as amide, diol, pentahydroxy, and urea, zwitterionic sorbents, and mixed-mode materials with amine functionalities. A set of 77 small molecules was used to evaluate the columns. We visualized the retention behavior of the different columns using retention time correlation plots. The analytes were classified as cations, anions, or neutral based on their estimated charge under the separation conditions. This involved adjusting the dissociation constants of the analytes for the acetonitrile content of the mobile phase and experimentally determining the pH of the mobile phase containing 70% acetonitrile. The retention correlation plots show that the selectivity differences strongly depended on ionic interactions. Comparisons of the neutral stationary phases (e.g., diol vs. amide) showed more similar selectivity than did comparisons of neutral columns versus columns with cation or anion exchange activity (bare silica or amine columns, respectively). The zwitterionic columns did not behave as perfectly neutral. The correlation plots indicated that they exhibited either cation or anion exchange activity, although to a lesser degree than the silica and amine-containing stationary phases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available