4.5 Review

Nonequilibrium Green's function method for phonon heat transport in quantum system

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 34, Issue 22, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1361-648X/ac5c21

Keywords

phonon transport; nonequilibrium Green's function; quantum system; anharmonic effect; many-body interaction

Funding

  1. National Natural Science Foundation of China [11974106, 11674092]

Ask authors/readers for more resources

The phonon heat transport property in quantum devices has been of great interest due to its significant quantum behaviors. Efforts have been made in establishing theoretical methods for phonon heat transport simulation in nanostructures, with challenges remaining in modeling phonon heat transport from wavelike coherent regime to particlelike incoherent regime. Among various theoretical approaches, Non-equilibrium Green's function (NEGF) method has attracted wide attention for its ability to perform full quantum simulation.
Phonon heat transport property in quantum devices is of great interesting since it presents significant quantum behaviors. In the past few decades, great efforts have been devoted to establish the theoretical method for phonon heat transport simulation in nanostructures. However, modeling phonon heat transport from wavelike coherent regime to particlelike incoherent regime remains a challenging task. The widely adopted theoretical approach, such as molecular dynamics, semiclassical Boltzmann transport equation, captures quantum mechanical effects within different degrees of approximation. Among them, Non-equilibrium Green's function (NEGF) method has attracted wide attention, as its ability to perform full quantum simulation including many-body interactions. In this review, we summarized recent theoretical advances of phonon NEGF method and the applications on the numerical simulation for phonon heat transport in nanostructures. At last, the challenges of numerical simulation are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available