4.6 Article

RP-HPLC separation of interconvertible rotamers of a 5-tetrahydroisoquinolin-6-yl-pyridin-3-yl acetic acid derivative and confirmation by VT NMR and DFT study

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jpba.2022.114675

Keywords

Interconvertible rotamers; RP-HPLC; Achiral; DFT; VT-NMR

Ask authors/readers for more resources

Due to drug resistance and tolerability, it is important to discover new compounds for HIV treatment. In this study, an intermediate compound SCMTDDA was synthesized and a simple and efficient HPLC method was developed to separate its interconvertible rotamers. The separation was further validated using NMR and DFT calculations.
Due to emergence of drug resistance and drug tolerability, there is urgent need for discovery of new chemical entity for the treatment of HIV infection. As a part of in-house small molecule drug discovery program for HIV infection, sodium-2-(tert-butoxy)- 2-(5-(2-(2-chloro-6-methylbenzyl)- 1,2,3,4-tetrahydroisoquinolin-6-yl)- 4(4,4-dimethylpiperidin-1-yl)- 2,6-dimethylpyridin-3-yl) acetate (SCMTDDA) was prepared as an intermediate for the synthesis of an API, designed as a HIV-1 integrase inhibitor. Initially, the final compound was isolated as a mixture of rotamers. In the current study, we have developed a simple and efficient achiral, reversed phase (RP) HPLC method to separate the interconvertible rotamers of SCMTDDA. The effect of several parameters, including stationary phase, buffer, modifiers and column temperature, were optimized for the chromatographic separation and it was observed that best separation was achieved on a SunFire C18 column using TFA/acetonitrile (ACN) methanol (MeOH) (1:1 v/v) as the mobile phase at 10 0C. The chromatographic observations were complemented with variable-temperature NMR and energy barrier calculations using density functional theory (DFT).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available