4.5 Article

AI-driven foam rheological model based on HPHT foam rheometer experiments

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.petrol.2022.110439

Keywords

Foam rheology; Viscosity; Foam rheometer; Artificial intelligence

Funding

  1. e College of Petroleum Engi-neering & Geoscience, King Fahd University of Petroleum Minerals

Ask authors/readers for more resources

This study generated a large amount of data on effective bulk foam viscosity using a high pressure high temperature (HPHT) foam rheometer device, and developed a predictive model through machine learning techniques. Temperature, corrosion inhibitor, and shear rate were found to have significant impact on reducing foam viscosity.
Foam has many applications in the oil and gas industry, either in hydraulic fracturing, enhanced oil recovery, or drilling operations. The success of these operations depends largely on understanding the behavior of foam rheology, which is complex. The literature contains many models used to estimate the effective bulk foam viscosity; most were based on fitting parameters estimated from limited-experimental data. Nevertheless, the fitting parameters are not valid at different operating conditions such as temperature, pressure, and shear rate. This results in models with limited applicability as the laboratory conditions are hardly replicated. In this study, we generated 360 data points of effective bulk foam viscosity using the high pressure high temperature (HPHT) foam rheometer device. A wide range of conditions was examined, such as temperature, pressure, shear rate, foam quality, and composition. The gas-phase consisted of either CO2 or N-2, while four types of water representing different salinities were used in the liquid phase. The foam was generated using seven different commercial surfactants at different concentrations. Also, low pH chelating agent and corrosion inhibitor were added in some experiments. The data pool was analyzed using four machine learning techniques: Artificial Neural Network (ANN), Decision Trees (DT), Random Forest Regressor (RFR), and K-Nearest Neighbor (KNN). ANN showed the highest accuracy with R-2 of 0.972 and 0.985 on the training and testing datasets, respectively. Also, the relative importance of features was examined using Pearson, Spearman, and Kendall correlation coefficients. The most significant parameters in reducing foam viscosity were temperature, corrosion inhibitor, and shear rate, respectively. On the contrary, foam quality positively impacted the foam viscosity, where 80% foam quality was the maximum tested condition. The impact of pressure, surfactant concentration, water type, and chelating agents were complex. This paper provides a simplified ANN-based model which can be used on the fly to predict the effective bulk foam viscosity in both laboratory and field conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available