4.5 Article

Interfacial tension and wettability of hybridized ZnOFe2O3/SiO2 based nanofluid under electromagnetic field inducement

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.petrol.2022.110184

Keywords

Interfacial tension (IFT); Wettability alteration; Electromagnetic field; Nanofluids

Ask authors/readers for more resources

Metal oxide nanoparticles play an important role in enhanced oil recovery. However, the agglomeration of nanoparticles in reservoirs hinders their performance. Injecting nanoparticles in the form of nanofluids under the influence of an electromagnetic field can improve their mobility. In this study, a new ZnOFe2O3/SiO2 nanofluid was synthesized and characterized, and its positive impact on interfacial tension and wettability was demonstrated.
Metal oxide nanoparticles (NPs) are useful in modifying two critical mechanisms for enhanced oil recovery (EOR): interfacial tension (IFT) and rock surface wettability. Regrettably, due to the harsh reservoir conditions, perpetual agglomeration of the NPs is prevalent in the reservoir. Consequently, performance of NPs is hindered particularly as they are trapped in the rock pores. To upgrade this issue, injecting NPs in form of nanofluids under the influence of an electromagnetic (EM) field was discovered recently. The EM driven approach of tuning the EOR technique is significant to improve the NPs mobility in the reservoir. In this present work, a new ZnOFe2O3/SiO2 nano hybrid was synthesized and characterized for the preparation of ZnOFe2O3/SiO2-basednanofluid. The single-phase ZnOFe2O3/SiO2 nanofluid incorporated both magnetic attribute with similar to 19.371 emu/g magnetization and dielectric properties with up to 0.523 mu F capacitance. These properties were found to energize electrification of the ZnOFe2O3/SiO2 nanofluid during EM driven field exposure for enhance IFT and wettability analysis. In essence, the electrical conductivity of the ZnOFe2O3/SiO2 nanofluid initiated some disruption along the oil/nanofluid interface under EM field inducement. Particularly, this influenced crude oil deformation and cause the IFT to reduce from 17.39 up to 1.27 mN/m. Considering the change in wettability, the free charges of the NPs were found to be attracted by the electric field at the boundary of oil/nanofluids/sandstone which produced internal agitation that enhanced the spread of the ZnOFe2O3/SiO2 nanofluid on the sandstone. In verification, the contact angle decreased to the level of 72 degrees from 141 degrees. Hence, for the first time, ZnOFe2O3/SiO2 nanofluid have shown a positive impact on IFT and wettability. These results are significant by providing information for enhancing oil recovery and oil displacement using electromagnetic field inducement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available