4.7 Article

R-loop Mapping and Characterization During Drosophila Embryogenesis Reveals Developmental Plasticity in R-loop Signatures

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 434, Issue 13, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2022.167645

Keywords

Chromatin; Epigenetics; RNA

Funding

  1. National Institutes of Health (NIH) General Medical Sciences [R35GM127087, R35GM128650]

Ask authors/readers for more resources

R-loops play important roles in various biological processes. This study reveals that R-loop abundance and genome localization change during Drosophila embryogenesis and that RNaseH1 activity is crucial for embryonic development. The findings also demonstrate the developmental plasticity of R-loops in gene formation and their relative positioning.
R-loops are involved in transcriptional regulation, DNA and histone post-translational modifications, genome replication and genome stability. To what extent R-loop abundance and genome-wide localization is actively regulated during metazoan embryogenesis is unknown. Drosophila embryogenesis provides a powerful system to address these questions due to its well-characterized developmental program, the sudden onset of zygotic transcription and available genome-wide data sets. Here, we measure the overall abundance and genome localization of R-loops in early and late-stage embryos relative to Drosophila cultured cells. We demonstrate that absolute R-loop levels change during embryogenesis and that RNaseH1 catalytic activity is critical for embryonic development. R-loop mapping by strand-specific DRIP-seq reveals that R-loop localization is plastic across development, both in the genes which form R-loops and where they localize relative to gene bodies. Importantly, these changes are not driven by changes in the transcriptional program. Negative GC skew and absolute changes in AT skew are associated with R-loop formation in Drosophila. Furthermore, we demonstrate that while some chromatin binding proteins and histone modifications such as H3K27me3 are associated with R-loops throughout development, other chromatin factors associated with R-loops in a developmental specific manner. Our findings highlight the importance and developmental plasticity of R-loops during Drosophila embryogenesis. (C) 2022 The Author(s). Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available