4.6 Article

Enhanced room-temperature magnetoresistance of hybrid graphene nanosheets produced by a laser-assisted process

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 57, Issue 10, Pages 5885-5893

Publisher

SPRINGER
DOI: 10.1007/s10853-022-06963-w

Keywords

-

Funding

  1. Canada Foundation for Innovation
  2. Natural Sciences and Engineering Research Council of Canada
  3. Biotron Institute of Western University

Ask authors/readers for more resources

The challenges in commercializing spintronic devices are addressed by developing hybrid graphene nanosheets using the MAPLE technique, which exhibit magnetoresistance (MR) phenomenon at low magnetic fields and room temperature. These findings suggest that graphene-based materials have potential for spintronic device applications.
The major challenges in the commercialization of spintronic devices lie in the high-dimensional materials with low spin-current generation efficiency and expensive fabrication processes. Recent discovery on the magnetoresistance (MR) phenomenon of graphene nanosheets could suggest that graphene-based materials can be excellent materials for spintronic devices. To develop two-dimensional materials with high MR at the low magnetic field and room temperature, we design and develop hybrid graphene nanosheets by using the matrix-assisted pulsed laser evaporation (MAPLE) technique. FeCo nanoparticles (NPs) are deposited onto the reduced graphene oxide (rGO) nanosheets in a stoichiometric manner by the MAPLE process. The density and size of FeCo NPs on rGO can be simply adjusted by varying the deposition time (t). Most importantly, with a limited FeCo ratio (0.4 at.%), MAPLE-prepared FeCo/rGO hybrid nanosheets display an MR phenomenon (MR up to 0.7%) at the low magnetic field (10 kOe) and room temperature. In this paper, we demonstrate that the MAPLE process can be used to produce hybrid graphene nanosheets with MR properties. The results of this work can contribute to the development of spintronic devices, e.g., ultra-thin MR sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available