4.5 Article

Flexible Conductive Nanocomposites for Electrochemical Devices Based on Chlorinated Natural Rubber/Nickel Oxide Nanoparticles

Journal

Publisher

SPRINGER
DOI: 10.1007/s10904-022-02307-y

Keywords

Chlorinated natural rubber; Nickel oxide; Nanocomposites; Temperature dependent conductivity; Dielectric parameters; DC conductivity modelling

Funding

  1. Kerala State Council for Science, Technology and Environment, Government of Kerala, India [566/2017/KSCSTE]

Ask authors/readers for more resources

This study investigated the structural, thermal, and temperature-dependent electrical properties of flexible conductive chlorinated natural rubber with various contents of nickel oxide nanoparticles. The addition of nanoparticles improved the thermal stability, dielectric properties, and AC electrical conductivity of the composites. The study emphasized the importance of interfacial interaction between the fillers and rubber chain for network formation.
A study on structural, thermal, temperature-dependent electrical properties such as AC conductivity and dielectric properties of flexible conductive chlorinated natural rubber (Cl-NR) were carried out with various contents of nickel oxide (NiO) nanoparticles. The role of fillers on DC conductivity of the composites was correlated with different theoretical models. The FT-IR spectra showed the characteristic absorption band for nano-NiO in the rubber indicating the effective incorporation of nanoparticles in Cl-NR. Optical bandgap energy was observed minimum for 5 phr loaded composite. TGA results showed that the thermal stability increased with NiO content in the polymer matrix. The dielectric properties and AC electrical conductivity increased significantly with the temperatures and also with the addition of nanoparticles up to 5 phr loading. The activation energy of the electrical conductivity decreases with an increase in temperature for all the systems. The higher value of dielectric permittivity explained the electrode polarisations at the low-frequency region. The skewed semi-circular arc in the Cole-Cole plot observed for all the samples explained the semiconducting behaviour of the nanocomposites. Space charge polarisation and relaxation dynamics of Cl-NR composites were explained based on modulus spectra. The McCullough model was found to be the most promising one to explain the DC conductivity of the system which emphasizes the importance of interfacial interaction at the boundary of filler and the rubber chain for the network formation. According to the results of this study, these samples can be used in highly durable flexible electronic devices such as conductive sensors, actuators and super-capacitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available