4.4 Article

miR-142-5p Encapsulated by Serum-Derived Extracellular Vesicles Protects against Acute Lung Injury in Septic Rats following Remote Ischemic Preconditioning via the PTEN/PI3K/Akt Axis

Journal

JOURNAL OF INNATE IMMUNITY
Volume 14, Issue 5, Pages 532-542

Publisher

KARGER
DOI: 10.1159/000522231

Keywords

Acute lung injury; Sepsis; Remote ischemic preconditioning; Extracellular vesicles; miR-142-5p; Phosphatase and tensin homologue deleted on chromosome 10

Categories

Ask authors/readers for more resources

This study investigates the effects of miR-142-5p encapsulated by serum-derived extracellular vesicles (EVs) on septic acute lung injury (ALI) following remote ischemic preconditioning (RIPC). The results show that miR-142-5p can target PTEN to activate the PI3K/Akt signaling pathway, reducing pulmonary edema, neutrophil infiltration, and inflammatory cytokine release in ALI.
This study intends to investigate the effects of miR-142-5p encapsulated by serum-derived extracellular vesicles (EVs) on septic acute lung injury (ALI) following remote ischemic preconditioning (RIPC) through a PTEN-involved mechanism. ALI was induced in rats by lipopolysaccharide (LPS) injection, 24 h before which RIPC was performed via the left lower limb. Next, the binding affinity between miR-142-5p and PTEN was identified. EVs were isolated from serum and injected into rats. The morphology of lung tissues, pulmonary edema, and inflammatory cell infiltration into lung tissues were then assessed, and TNF-alpha and IL-6 levels in serum and lung tissues were measured. The results indicated that RIPC could attenuate ALI in sepsis. miR-142-5p expression was increased in serum, lung tissues, and serum-derived EVs of ALI rats following RIPC. miR-142-5p could target PTEN to activate the PI3K/Akt signaling pathway. miR-142-5p shuttled by serum-derived EVs reduced pulmonary edema, neutrophil infiltration, and TNF-alpha and IL-6 levels, thus alleviating ALI in LPS-induced septic rats upon RIPC. Collectively, serum-derived EVs-loaded miR-142-5p downregulated PTEN and activated PI3K/Akt to inhibit ALI in sepsis following RIPC, thus highlighting potential therapeutic molecular targets against ALI in sepsis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available