4.7 Article

Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 2. agro-environmental properties

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 312, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2022.114894

Keywords

Hydrochar; Co-compost; Phytotoxicity; Plant growth bioassay; Soil effect; GHG emissions

Funding

  1. European Union under the European Institute of Innovation and Technology [EIT/EIT Climate-KIC/SGA 2020/1]

Ask authors/readers for more resources

This study focuses on the investigation of hydrochar and hydrochar co-compost as amendments, evaluating their properties and their impact on soil and greenhouse gas emissions. The results demonstrate the good quality of hydrochar co-compost and validate the use of hydrochar as an amendment in soil.
The work concerns the study of the hydrochar from digestate and hydrochar co-compost characterization as amendments. The processes for hydrochar and co-compost production were described in Part 1 of this work (Scrinzi et al., 2022). The amendment properties of hydrochar (produced at 180-200-220 C for 3 h) and co composts (25%, 50%, and 75% hydrochar percentage of digestate substitution) were assessed by phytotoxicity, plant growth bioassay, and soil effect. Different seeds species (Lepidium sativum, Cucumis sativus, and Sorghum bicolor sp.) were dosed at increased concentrations using both wet raw amendments and their water extracts. The chemical characterization showed phytotoxic compounds content depending on both the initial feedstock (digestate) and the HTC process; at the same time, the analysis highlighted the reduction of these compounds by composting (organic acid, polyphenols, salt concentration). The dose-response was analyzed by the Cedergreen-Streibig-Ritz model and the half-maximal effective concentration (EC50) was calculated based on this equation. The soil properties and GHG emissions measurements (CH4, CO2, N2O, and NH3) highlighted the effect on N dynamics and on soil respiration induced by substrates. The HC200 soil application determined a significant impact on CO2 and N2O emission and NH3 volatilization (10.82 mol CO2/m(2); 51.45 mmol N2O/m(2); 112 mol NH3/m(2)) and a significant reduction of total N and TOC (46% of TKN and 49% of TOC). The co-compost (75%) showed specific effects after soil application compared to other samples an increase of available P (48%), a greater content of nitrogen (1626 mg/kg dry basis), and a reduction of organic carbon (17%). Our results demonstrate the good quality of co-compost and at the same time the validity of this post-treatment for addressing many issues related to hydrochar use in the soil as an amendment, confirming the suitability of HTC process integration for digestate treatment in anaerobic digestion plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available