4.7 Article

Adsorption/desorption characteristics of low-concentration semi-volatile organic compounds in vapor phase on activated carbon

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 305, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.114360

Keywords

Semi-volatile organic compounds; Adsorption; desorption; Adsorption kinetics; Mechanism; Density functional theory

Funding

  1. National Key Research and Development Program of China [2018YFB0605200]
  2. Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX20_0092]
  3. Fundamental Research Funds for the Central Universities [3203002101D]

Ask authors/readers for more resources

The adsorption/desorption behaviors of semi-volatile organic compounds in vapor phase by activated carbon were studied through experiments and density functional theory calculation. Increasing temperature inhibited the adsorption of SVOCs on AC, and the strong interaction between SVOCs and active sites affected the desorption temperature.
The adsorption/desorption behaviors of semi-volatile organic compounds (SVOCs: 1,2,3,4-tetrachlorobenzene (TCB) and phenol) in vapor phase by activated carbon (AC) were investigated by the experiments and density functional theory calculation. Investigations showed that at 100-160 degrees C, the adsorption capacities of TCB and phenol on AC were in the range of 176.6-342.0 mg/g and 24.0-66.4 mg/g, respectively. Increasing the temperature inhibited the SVOCs adsorption. TCB tended to be adsorbed on AC surface by monolayer, whereas the phenol was multilayer adsorption. The stronger interaction between SVOCs and active sites resulted in a higher desorption temperature (TCB: 255-689 degrees C; phenol: 200-369 degrees C). The SVOCs adsorption on AC was fitted well by the pseudo-first-order kinetic model, their lower concentration and larger molecular structure influenced the AC external mass transfer and intraparticle diffusion. TCB and phenol were adsorbed on graphite layer by a parallel manner, their highest adsorption energies were -75.59 kJ/mol and -55.00 kJ/mol, respectively. Oxygencontaining groups altered the charge distribution of the atoms at the edge of the graphite layer, which improved the SVOCs adsorption through enhancement of electrostatic interactions and formation of hydrogen bonds. The carboxyl and lactone groups played a critical role in improving the TCB adsorption capacity, while the carboxyl was important for phenol adsorption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available