4.7 Article

Methane mitigation potential of 3-nitrooxypropanol in lactating cows is influenced by basal diet composition

Journal

JOURNAL OF DAIRY SCIENCE
Volume 105, Issue 5, Pages 4064-4082

Publisher

ELSEVIER SCIENCE INC
DOI: 10.3168/jds.2021-20782

Keywords

dairy cattle; methanogen inhibitor; feed additive; silage-based diet

Funding

  1. DSM Nutritional Products (Basel, Switzerland)
  2. Samenwerkingsverband Noord-Nederland (SNN)

Ask authors/readers for more resources

The objective of this study was to investigate the potential of 3-Nitrooxypropanol (3-NOP) in reducing CH4 emissions in dairy cattle and whether it was affected by the composition of the basal diet. The results showed that supplementing 3-NOP in a corn silage-based diet was more effective in reducing CH4 emissions compared to a grass silage-based diet.
The objective of this study was to investigate whether the CH4 mitigation potential of 3-nitrooxypropanol (3-NOP) in dairy cattle was affected by basal diet (BD) composition. The experiment involved 64 Holstein-Friesian dairy cows (146 +/- 45 d in milk at the start of trial; mean +/- SD) in 2 overlapping crossover trials, each consisting of 2 measurement periods. Cows were blocked according to parity, d in milk, and milk yield, and randomly allocated to 1 of 3 diets: a grass silage-based diet (GS) consisting of 30% concentrates and 70% grass silage (DM basis), a grass silage- and corn silage-mixed diet (GSCS) consisting of 30% concentrates, 42% grass silage, and 28% corn silage (DM basis), or a corn silage-based diet (CS) consisting of 30% concentrates, 14% grass silage, and 56% corn silage (DM basis). Two types of concentrates were formulated, viz. a concentrate for the GS diet and a concentrate for the CS diet, to meet the energy and protein requirements for maintenance and milk production. The concentrate for the GSCS diet consisted of a 50:50 mixture of both concentrates. Subsequently, the cows within each type of BD received 2 treatments in a crossover design: either 60 mg of 3-NOP/kg of DM (NOP60) and a placebo with 0 mg of 3-NOP/kg of DM (NOP0) in one crossover or 80 mg of 3-NOP/kg of DM (NOP80) and NOP0 in the other crossover. Diets were provided as total mixed ration in feed bins, which automatically recorded feed intake. Additional concentrate was fed in the GreenFeed system that was used to measure emissions of CH4 and H-2. The CS diets resulted in a reduced CH4 yield (g/kg DMI) and CH4 intensity (g/kg milk). Feeding 3-NOP resulted in a decreased DMI. Milk production and composition did not differ between NOP60 and NOP0, whereas milk yield and the yield of major components decreased for NOP80 compared with NOP0. Feed efficiency was not affected by feeding 3-NOP. Interactions between BD and supplementation of 3-NOP were observed for the production (g/d) and yield (g/kg DMI) of both CH4 and H-2, indicating that the mitigating effect of 3-NOP depended on the composition of the BD. Emissions of CH4 decreased upon 3-NOP supplementation for all BD, but the decrease in CH4 emissions was smaller for GS (-26.2% for NOP60 and -28.4% for NOP80 in CH4 yield) compared with both GSCS (-35.1% for NOP60 and -37.9% for NOP80 for CH4 yield) and CS (-34.8% for NOP60 and -41.6% for NOP80 for CH4 yield), with no difference between the latter 2 BD. Emissions of H-2 increased upon 3-NOP supplementation for all BD, but the H-2 yield (g/kg DMI) increased 3.16 and 3.30-fold, respectively, when NOP60 and NOP80 were supplemented to GS, and 4.70 and 4.96 fold, respectively, when NOP60 and NOP80 were supplemented to CS. In conclusion, 3-NOP can effectively decrease CH4 emissions in dairy cows across diets, but the level of CH4 mitigation is greater when supplemented in a corn silage-based diet compared with a grass silage-based diet.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available