4.6 Article

QUBIC V: Cryogenic system design and performance

Journal

Publisher

IOP Publishing Ltd
DOI: 10.1088/1475-7516/2022/04/038

Keywords

CMBR detectors; CMBR experiments; CMBR polarisation; gravitational waves and CMBR polarization

Funding

  1. France: ANR (Agence Nationale de la Recherche)
  2. France: DIM-ACAV (Domaine d'Interet Majeur-Astronomie et Conditions d'Apparition de la Vie)
  3. France: CNRS/IN2P3 (Centre national de la recherche scientifique/Institut national de physique nucleaire et de physique des particules)
  4. France: CNRS/INSU (Centre national de la recherche scientifique/Institut national et al. de sciences de l'univers)
  5. Italy: CNR/PNRA (Consiglio Nazionale delle Ricerche/Programma Nazionale Ricerche in Antartide)
  6. Italy: INFN (Istituto Nazionale di Fisica Nucleare)
  7. Argentina: MINCyT (Ministerio de Ciencia, Tecnologia e Innovacion)
  8. Argentina: CNEA (Comision Nacional de Energia Atomica)
  9. Argentina: CONICET (Consejo Nacional de Investigaciones Cientificas y Tecnicas)
  10. Irish Research Council under the Government of Ireland Postgraduate Scholarship Scheme
  11. National University of Ireland, Maynooth
  12. Science Foundation Ireland

Ask authors/readers for more resources

This study describes the design and experimental validation of the cryogenic system for the QUBIC experiment, which aims to measure the polarization of the Cosmic Microwave Background (CMB). The system has a large volume and mass, and uses cryogenic detector arrays and cold optical systems to enhance mapping speed. After more than 6 months of continuous operation testing, the system has been proven to operate stably.
Current experiments aimed at measuring the polarization of the Cosmic Microwave Background (CMB) use cryogenic detector arrays with cold optical systems to boost their mapping speed. For this reason, large volume cryogenic systems with large optical windows, working continuously for years, are needed. The cryogenic system of the QUBIC (Q & U Bolometric Interferometer for Cosmology) experiment solves a combination of simultaneous requirements: very large optical throughput (similar to 40 cm(2)sr), large volume (similar to 4 m(3)) and large mass (similar to 165 kg) of the cryogenic instrument. Here we describe its design, fabrication, experimental optimization and validation in the Technological Demonstrator configuration. The QUBIC cryogenic system is based on a large volume cryostat that uses two pulse-tube refrigerators to cool the instrument to similar to 3K. The instrument includes the cryogenic polarization modulator, the corrugated feedhorn array, and the lower temperature stages: a He-4 evaporator cooling the interferometer beam combiner to -1K and a He-3 evaporator cooling the focal-plane detector arrays to similar to 0.3K. The cryogenic system has been tested and validated for more than 6 months of continuous operation. The detector arrays have reached a stable operating temperature of 0.33 K, while the polarization modulator has operated at a similar to 10K base temperature. The system has been tilted to cover the boresight elevation range 20 degrees-90 degrees without significant temperature variations. The instrument is now ready for deployment to the high Argentinean Andes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available