4.7 Article

Integrating the Z-scheme heterojunction and hot electrons injection into a plasmonic-based Zn2In2S5/W18O49 composite induced improved molecular oxygen activation for photocatalytic degradation and antibacterial performance

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 610, Issue -, Pages 953-969

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2021.11.141

Keywords

Molecular oxygen activation; LSPR effect; Z-scheme; Dual-channel process; Bacterial destruction

Funding

  1. Key R & D project of Hunan province [2018SK2048]
  2. National Natural Science Foun-dation of China [51541801, 51521006]

Ask authors/readers for more resources

The study presents the design of a cost-effective wide-spectrum Zn2In2S5/W18O49 composite with enhanced photocatalytic performance. The Z-scheme heterostructure and local surface plasmon resonance effect synergistically improve the interfacial charge transfer rate and light-absorbing ability, leading to the formation of more reactive oxygen species. This photocatalyst shows promising potential for efficient wastewater treatment.
The semiconductor-based photocatalysts with local surface plasmon resonance (LSPR) effect can extend light response to near-infrared region (NIR), as well as promote charge-carriers transfer, which provide a novel insight into designing light-driven photocatalyst with excellent photocatalytic performance. Here, we designed cost-effective wide-spectrum Zn2In2S5/W18O49 composite with enhanced photocatalytic performance based on a dual-channel charge transfer pathway. Benefiting from the synergistic effect of Z-scheme heterostructure and unique LSPR effect, the interfacial charge-carriers transfer rate and light-absorbing ability of Zn2In2S5/W(18)O(49 )were enhanced significantly under visible and NIR (vis-NIR) light irradiation. More reactive oxygen species (ROS) were formed by efficient molecular oxygen activation, which were the critical factors for both Escherichia coli (E. coli) photoinactivation and tetra-cycline (TC) photodegradation. The enhancement of molecular oxygen activation (MOA) ability was verified via quantitative analyses, which evaluated the amount of ROS through degrading nitrotetrazolium blue chloride (NBT) and p-phthalic acid (TA). By combining theoretical calculations with diverse experimental results, we proposed a credible photocatalytic reaction mechanism for antibiotic degradation and bacteria inactivation. This study develops a new insight into constructing promising photocatalysts with efficient photocatalytic activity in practical wastewater treatment. (C) 2021 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available