4.7 Review

A review on recent developments and progress in sustainable acrolein production through catalytic dehydration of bio-renewable glycerol

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 341, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2022.130876

Keywords

Glycerol; Acrolein; Catalytic dehydration; Zeolites; Metal oxides; Heteropoly acids

Funding

  1. Universiti Sains Malaysia [8014059]

Ask authors/readers for more resources

The catalytic dehydration of glycerol to acrolein is a promising research topic with commercial prospects. Recent studies have focused on reducing catalyst deactivation, improving catalyst stability, and optimizing reaction parameters. Promising results have been achieved through altering catalyst structure, introducing new techniques and methods.
Glycerol can be converted into acrolein through dehydration employing various catalysts such as zeolites, metal oxides, heteropoly acids, phosphates and pyrophosphates. Previous works focused on synthesizing catalysts to obtain high acrolein selectivity. However, the recent research focuses on reducing catalyst deactivation due to coking, enhancing catalyst stability, improving catalyst reusability, and optimizing reaction parameters. These factors are critical for commercial prospects. Different techniques such as altering catalyst structure by modifying the axis length of zeolites (nano size), introducing mesoporosity and incorporating noble metals have been studied. The use of hybrid acid sites, microwave radiation, micro-cage reactors, coke as electric capacitors, and Pickering emulsion as a reaction medium have also shown promising results. The highest acrolein selectivity of 92% has been obtained so far over tailored zeolite ZSM-5 catalyst with 0.102 mg/gcat coke deposition. The metal-organic framework-based catalyst Zr-6 (MOF-808) showed an acrolein selectivity of 91%. Despite these achievements, there is still no commercial technology available to address bio-glycerol conversion to acrolein. This article provides an overview of the recent progress in the catalytic dehydration of glycerol to acrolein. Prospects and recommendations to achieve industrial acrolein production are also proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available