4.7 Article

Unphysical discontinuities, intruder states and regularization in GW methods

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 156, Issue 23, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0089317

Keywords

-

Funding

  1. European Research Council (ERC) under the European Union [863481]
  2. European Research Council (ERC) [863481] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

By recasting the non-linear frequency-dependent GW quasiparticle equation into a linear eigenvalue problem, this study explains the occurrence of multiple solutions and unphysical discontinuities in various physical quantities computed within the GW approximation. The GW self-energy is treated as an effective Hamiltonian, which reveals the key signatures of strong correlation in the (N +/- 1)-electron states and their direct relation to the intruder state problem. A regularization procedure inspired by the similarity renormalization group is proposed to avoid these issues and accelerate the convergence of partially self-consistent GW calculations.
By recasting the non-linear frequency-dependent GW quasiparticle equation into a linear eigenvalue problem, we explain the appearance of multiple solutions and unphysical discontinuities in various physical quantities computed within the GW approximation. Considering the GW self-energy as an effective Hamiltonian, it is shown that these issues are key signatures of strong correlation in the (N +/- 1)-electron states and can be directly related to the intruder state problem. A simple and efficient regularization procedure inspired by the similarity renormalization group is proposed to avoid such issues and speed up the convergence of partially self-consistent GW calculations. Published under an exclusive license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available