4.7 Article

Computational analysis of marine algal compounds for obesity management against pancreatic lipase

Journal

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS
Volume 41, Issue 11, Pages 4863-4872

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2022.2074139

Keywords

Obesity; pancreatic lipase; marine algal compounds; molecular docking and molecular dynamics

Ask authors/readers for more resources

Obesity is a global crisis and the compound BC010 from the brown algae Cystophora fibrosa has been identified as a potential drug candidate for inhibiting obesity by inhibiting pancreatic lipase.
Obesity is considered a global crisis because of its increased risk factors triggered by lifestyle changes. The prevalence of this condition is increasing at an alarming rate, giving rise to development of novel drugs. Pancreatic lipase possesses higher efficacy in inhibiting this condition among the other drug targets. In this study, virtual screening of 126 plant-derived anti-obesity compounds and 1110 marine algal compounds from seaweed metabolite database were screened and targeted against pancreatic lipase and ranked based on their binding affinity values. A total of 530 compounds that possessed best docked scores of less than -6 kcal/mol were checked for Lipinski's properties through Swiss ADME. Furthermore, these compounds were subjected to toxicity prediction using PROTOX II server. As much as 38 compounds were found to be non-toxic and were subjected to molecular docking analysis. Based on the binding energy, the following compounds RG012 (-10.15 kcal/mol), LIG42 (-9.7 kcal/mol), BC010 (-8.47 kcal/mol), RL073 (-8.2 kcal/mol), and LIG46 (-8.03 kcal/mol) were selected exhibiting higher binding affinity when compared to the standard drug (Orlistat) and hence these compounds were subjected to molecular dynamics simulation using GROMACS. BC010 complex revealed a stable interaction within the binding pocket and the binding free energy is -158.208 kJ/mol which is higher when compared to other complexes in 100 ns simulation. BC010 ((7S,11S,12S,14R)-4',14-dimethoxyamentol) from brown algae Cystophora fibrosa could be considered as a potential drug candidate to suppress obesity by inhibiting pancreatic lipase. Communicated by Ramaswamy H. Sarma

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available