4.6 Article

Sialyltransferase ST6GAL-1 mediates resistance to chemoradiation in rectal cancer

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 298, Issue 3, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jbc.2022.101594

Keywords

-

Funding

  1. National Institutes of Health [U01 CA233581, R01 CA225177]

Ask authors/readers for more resources

ST6GAL-1 promotes resistance to chemoradiotherapy in rectal cancer by inhibiting apoptosis.
Locally advanced rectal cancer is typically treated with chemoradiotherapy followed by surgery. Most patients do not display a complete response to chemoradiotherapy, but resistance mechanisms are poorly understood. ST6GAL-1 is a sialyltransferase that adds the negatively charged sugar, sialic acid (Sia), to cell surface proteins in the Golgi, altering their function. We therefore hypothesized that ST6GAL-1 could mediate resistance to chemoradiation in rectal cancer by inhibiting apoptosis. Patient-derived xenograft and organoid models of rectal cancer and rectal cancer cell lines were assessed for ST6GAL-1 protein with and without chemoradiation treatment. ST6GAL-1 mRNA was assessed in untreated human rectal adenocarcinoma by PCR assays. Samples were further assessed by Western blotting, Caspase-Glo apoptosis assays, and colony formation assays. The presence of functional ST6GAL-1 was assessed via flow cytometry using the Sambucus nigra lectin, which specifically binds cell surface alpha 2,6-linked Sia, and via lectin precipitation. In patient-derived xenograft models of rectal cancer, we found that ST6GAL-1 protein was increased after chemoradiation in a subset of samples. Rectal cancer cell lines demonstrated increased ST6GAL-1 protein and cell surface Sia after chemoradiation. ST6GAL-1 was also increased in rectal cancer organoids after treatment. ST6GAL1 knockdown in rectal cancer cell lines resulted in increased apoptosis and decreased survival after treatment. We concluded that ST6GAL-1 promotes resistance to chemoradiotherapy by inhibiting apoptosis in rectal cancer cell lines. More research will be needed to further elucidate the importance and mechanism of ST6GAL-1-mediated resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available