4.6 Article

Evaluating different metrics from the thermal-based two-source energy balance model for monitoring grapevine water stress

Journal

IRRIGATION SCIENCE
Volume 40, Issue 4-5, Pages 697-713

Publisher

SPRINGER
DOI: 10.1007/s00271-022-00790-2

Keywords

-

Funding

  1. CRUE-CSIC
  2. Springer Nature

Ask authors/readers for more resources

Precision irrigation management requires operational monitoring of crop water status. Different methods, such as physiological metrics and thermal remote sensing, have been proposed for assessing crop water stress. The Two-Source Energy Balance (TSEB) model is a widely used and robust evapotranspiration model that can accurately estimate crop water stress.
Precision irrigation management requires operational monitoring of crop water status. However, there is still some controversy on how to account for crop water stress. To address this question, several physiological, several physiological metrics have been proposed, such as the leaf/stem water potentials, stomatal conductance, or sap flow. On the other hand, thermal remote sensing has been shown to be a promising tool for efficiently evaluating crop stress at adequate spatial and temporal scales, via the Crop Water Stress Index (CWSI), one of the most common indices used for assessing plant stress. CWSI relates the actual crop evapotranspiration ET (related to the canopy radiometric temperature) to the potential ET (or minimum crop temperature). However, remotely sensed surface temperature from satellite sensors includes a mixture of plant canopy and soil/substrate temperatures, while what is required for accurate crop stress detection is more related to canopy metrics, such as transpiration, as the latter one avoids the influence of soil/substrate in determining crop water status or stress. The Two-Source Energy Balance (TSEB) model is one of the most widely used and robust evapotranspiration model for remote sensing. It has the capability of partitioning ET into the crop transpiration and soil evaporation components, which is required for accurate crop water stress estimates. This study aims at evaluating different TSEB metrics related to its retrievals of actual ET, transpiration and stomatal conductance, to track crop water stress in a vineyard in California, part of the GRAPEX experiment. Four eddy covariance towers were deployed in a Variable Rate Irrigation system in a Merlot vineyard that was subject to different stress periods. In addition, root-zone soil moisture, stomatal conductance and leaf/stem water potential were collected as proxy for in situ crop water stress. Results showed that the most robust variable for tracking water stress was the TSEB derived leaf stomatal conductance, with the strongest correlation with both the measured root-zone soil moisture and stomatal conductance gas exchange measurements. In addition, these metrics showed a better ability in tracking stress when the observations are taken early after noon.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available