4.4 Article

Detailed bed topography and sediment load measurements for two stepdown flows in a laboratory flume

Journal

INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH
Volume 37, Issue 3, Pages 287-298

Publisher

IRTCES
DOI: 10.1016/j.ijsrc.2021.11.002

Keywords

Sediment transport; Bedforms; Dunes; Wavelets

Funding

  1. U.S. Army Corps of Engineers' Regional Sediment Management Program

Ask authors/readers for more resources

Streams and rivers, especially smaller ones, often experience rapid changes in flow rate, leading to disequilibrium in sediment transport rates and bedforms. Flume experiments were conducted to study the response of bedforms to rapid flow changes, showing that relict bedforms stop moving and small bedforms form quickly. The changes in sediment transport rates align with previous predictions.
Streams and rivers, particularly smaller ones, often do not maintain steady flow rates for long enough to reach equilibrium conditions for sediment transport and bed topography. In particular, streams in small watersheds may be subject to rapidly changing hydrographs, and relict bedforms from previous high flows can cause further disequilibrium that complicates the prediction of sediment transport rates. In order to advance the understanding of how bedforms respond to rapid changes in flow rate, a series of flume experiments were performed where the flow was reduced rapidly from equilibrium conditions. Sediment transport rates and bed elevation data across the flume and over a 15-meter-long test section were collected during the experiments to allow detailed examination of evolving bedform dynamics. It was found that relict bedforms stopped moving completely after flow reductions, and the mode of sediment transport was shifted to small bedforms that arose rapidly over dune stoss sections throughout the test section. The changes in sediment transport with time as the sand bed adjusted to the new flow rate was found to agree with predictions based on the relations proposed in Wren et al. (2020). Wavelet analysis is used to visualize changes in length and amplitude scales during the bed transition process. (c) 2021 International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Research. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available