4.4 Article

Numerical study of heat and mass transfer on the pulsatile flow of blood under atherosclerotic condition

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/ijnsns-2021-0155

Keywords

finite difference method; heat and mass transfer; Sutterby fluid; unsteady flow

Ask authors/readers for more resources

This article investigates the effects of heat and mass transfer on the pulsatile flow of blood through a tapered artery under atherosclerotic conditions. The study simplifies the coupled equations and applies numerical methods to analyze the impact of various parameters on heat and mass transfer. It reveals that the temperature distribution in the constricted region of the blood vessel is closely related to the viscoelastic nature of blood and that the heat transfer rate at the wall of the artery can be enhanced by reducing thermal conductivity.
The present article investigates the effects of heat and mass transfer on the pulsatile flow of blood through a tapered artery under atherosclerotic conditions. The blood is treated as Sutterby fluid. The wall of the artery is considered to be time-invariant having overlapping stenosis in its lumen. The fully coupled momentum, energy and concentration equations in conjunction with the constitutive equation of Sutterby fluid are simplified by applying the mild stenosis assumption. The governing equations together with the prescribed boundary conditions are discretized and solved by using the finite difference method. The results highlighting the effects of various emerging parameters on the heat and mass transfer are also displayed through graphs. The effects of stenosis height and Prandtl number on the axial variation of Nusselt number are also discussed in detail. A comparison of Sutterby fluid with the Newtonian fluid is also presented to highlight the effects of the Prandtl number on the heat and mass transfer. The present study reveals that the distribution of temperature in the constricted region of the blood vessel is closely associated with the viscoelastic nature of blood. It is also observed that the rate of heat transfer at the wall of the artery can be enhanced by reducing the thermal conductivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available