4.7 Article

MicroRNAs in Leukemias: A Clinically Annotated Compendium

Journal

Publisher

MDPI
DOI: 10.3390/ijms23073469

Keywords

microRNA (miRNA); leukemia; interaction network; miRNA-target interaction (MTI)

Funding

  1. Slovenian Research Agency [P3-0326]

Ask authors/readers for more resources

This study conducted data synthesis using two databases to identify central miRNAs for leukemia. The analysis revealed a large, highly interconnected network of miRNA-target interactions (MTI) between leukemia-associated genes and miRNAs. Certain miRNAs were identified as potential central disease molecules for multiple leukemia types. Further studies are needed to elucidate the therapeutic potential of miRNAs in leukemia.
Leukemias are a group of malignancies of the blood and bone marrow. Multiple types of leukemia are known, however reliable treatments have not been developed for most leukemia types. Furthermore, even relatively reliable treatments can result in relapses. MicroRNAs (miRNAs) are a class of short, noncoding RNAs responsible for epigenetic regulation of gene expression and have been proposed as a source of potential novel therapeutic targets for leukemias. In order to identify central miRNAs for leukemia, we conducted data synthesis using two databases: miRTarBase and DISNOR. A total of 137 unique miRNAs associated with 16 types of leukemia were retrieved from miRTarBase and 86 protein-coding genes associated with leukemia were retrieved from the DISNOR database. Based on these data, we formed a visual network of 248 miRNA-target interactions (MTI) between leukemia-associated genes and miRNAs associated with >= 4 leukemia types. We then manually reviewed the literature describing these 248 MTIs for interactions identified in leukemia studies. This manually curated data was then used to visualize a network of 64 MTIs identified in leukemia patients, cell lines and animal models. We also formed a visual network of miRNA-leukemia associations. Finally, we compiled leukemia clinical trials from the ClinicalTrials database. miRNAs with the highest number of MTIs were miR-125b-5p, miR-155-5p, miR-181a-5p and miR-19a-3p, while target genes with the highest number of MTIs were TP53, BCL2, KIT, ATM, RUNX1 and ABL1. The analysis of 248 MTIs revealed a large, highly interconnected network. Additionally, a large MTI subnetwork was present in the network visualized from manually reviewed data. The interconnectedness of the MTI subnetwork suggests that certain miRNAs represent central disease molecules for multiple leukemia types. Additional studies on miRNAs, their target genes and associated biological pathways are required to elucidate the therapeutic potential of miRNAs in leukemia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available