4.7 Article

Deep Learning for Visual Tracking: A Comprehensive Survey

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2020.3046478

Keywords

Visualization; Target tracking; Tracking; Training; Benchmark testing; Feature extraction; Correlation; Visual tracking; deep learning; computer vision; appearance modeling

Funding

  1. University of Alberta
  2. NSERC [RGPIN-201904575]
  3. University of Alberta-Huawei Joint Innovation Collaboration Grants

Ask authors/readers for more resources

This survey systematically investigates current deep learning-based visual tracking methods, benchmark datasets, and evaluation metrics, while extensively evaluating leading visual tracking methods.
Visual target tracking is one of the most sought-after yet challenging research topics in computer vision. Given the ill-posed nature of the problem and its popularity in a broad range of real-world scenarios, a number of large-scale benchmark datasets have been established, on which considerable methods have been developed and demonstrated with significant progress in recent years - predominantly by recent deep learning (DL)-based methods. This survey aims to systematically investigate the current DL-based visual tracking methods, benchmark datasets, and evaluation metrics. It also extensively evaluates and analyzes the leading visual tracking methods. First, the fundamental characteristics, primary motivations, and contributions of DL-based methods are summarized from nine key aspects of: network architecture, network exploitation, network training for visual tracking, network objective, network output, exploitation of correlation filter advantages, aerial-view tracking, long-term tracking, and online tracking. Second, popular visual tracking benchmarks and their respective properties are compared, and their evaluation metrics are summarized. Third, the state-of-the-art DL-based methods are comprehensively examined on a set of well-established benchmarks of OTB2013, OTB2015, VOT2018, LaSOT, UAV123, UAVDT, and VisDrone2019. Finally, by conducting critical analyses of these state-of-the-art trackers quantitatively and qualitatively, their pros and cons under various common scenarios are investigated. It may serve as a gentle use guide for practitioners to weigh when and under what conditions to choose which method(s). It also facilitates a discussion on ongoing issues and sheds light on promising research directions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available