4.7 Article

Capacitive Temperature Sensing via Displacement Amplification

Journal

IEEE SENSORS JOURNAL
Volume 22, Issue 11, Pages 10388-10395

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSEN.2022.3169585

Keywords

Temperature sensors; Capacitance; Sensors; Temperature measurement; Capacitive sensors; Strain; Permittivity; Capacitive temperature sensors; displacement amplification mechanisms; extreme thermal expansion

Ask authors/readers for more resources

We propose the realization of capacitive temperature sensors based on the concept of displacement amplification. Our design utilizes high CTE metallic layers and a low CTE dielectric layer to achieve large out-of-plane displacements and capacitive changes as the temperature increases.
We propose the realization of capacitive temperature sensors based on the concept of displacement amplification. Our design features two high coefficient of thermal expansion (CTE) metallic layers separated by a low-CTE dielectric layer; conductive and dielectric layers are then separated by a thin air gap and glued together at a few locations. As the temperature increases, the high-CTE layer tends to expand more than the low-CTE one. Owing to the constraint to planar expansion imposed by the low-CTE layer, this results in large out-of-plane displacements of the high-CTE layer - hence the displacement amplification term. In our case, the high-CTE layer buckles and causes a reduction of the gap between conductive and dielectric layers; in turn, this results in a large change of capacitance. First, we illustrate the concept via numerical simulations. Then, we realize a low-cost prototype of such sensor by using aluminum foil as conductor, paper as dielectric, and by gluing the layers together with cyanoacrylate. Our results demonstrate the potential of this simple design as a route towards efficient and low-cost temperature sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available