4.5 Article

A Physical Interpretation of Asymmetric Growth and Decay of the Geomagnetic Dipole Moment

Journal

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
Volume 23, Issue 3, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2021GC010239

Keywords

geomagnetic field; axial dipole; stochastic model; time variations

Funding

  1. National Science Foundation [EAR-1644644, EAR-1725798]

Ask authors/readers for more resources

Observations of relative paleointensity reveal various asymmetries in the time dependence of the virtual axial dipole moment (VADM). Stochastic models are used to examine the origin of this behavior, and it is found that a model generating the dipole through a series of impulsive events in time can better explain the observed asymmetry.
Observations of relative paleointensity reveal several forms of asymmetry in the time dependence of the virtual axial dipole moment (VADM). Slow decline of the VADM into a reversal is often followed by a more rapid rise back to a quasi-steady state. Asymmetry is also observed in trends of VADM during times of stable polarity. Trends of increasing VADM over time intervals of a few 10s of kyr are more intense and less frequent than decreasing trends. We examine the origin of this behavior using stochastic models. The usual (Langevin) model can account for asymmetries during reversals, but it cannot reproduce the observed asymmetry in trends during stable polarity. Better agreement is achieved with a different class of stochastic models in which the dipole is generated by a series of impulsive events in time. The timing of each event occurs randomly as a Poisson process and the amplitude is also randomly distributed. Predicted trends replicate the observed asymmetry when the generation events are large and the recurrence time is long (typically longer than 3 kyr). Large and infrequent generation events argue against dipole generation by small-scale turbulent flow. Instead, the observations favor a mechanism that relies on expulsion of poloidal magnetic field from the core.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available