4.6 Article

The WRKY transcription factor family in cowpea: Genomic characterization and transcriptomic profiling under root dehydration

Journal

GENE
Volume 823, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.gene.2022.146377

Keywords

Abiotic stress; Drought; qPCR; RNA-Seq; Differential expression; Vigna unguiculata

Funding

  1. Conselho Nacional de Desenvolvimento Cientifico Tecnologico (CNPq) [573884/2008-0, 442019/2019-0, 433931/2018-3, 310871/2014-0, 228476/2013-5, 313527/2017-2]
  2. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) [23038.010050/ 2013-04]
  3. Division of Integrative Organismal Systems of the National Science Foundation (NSF) [IOS-1213059, 416 IOS-1238057]
  4. Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE) [APQ-0556-5.01/15]
  5. Kirkhouse Trust (SCIO) [GF14730]

Ask authors/readers for more resources

This study investigated the WRKY gene family in the drought-tolerant legume cowpea and identified key genes involved in the response to root dehydration stress. The findings provide a foundation for improving drought tolerance in this important crop.
Cowpea [Vigna unguiculata (L.) Walp.] is one of the most tolerant legume crops to drought and salt stresses. WRKY transcription factor (TF) family members stand out among plant transcriptional regulators related to abiotic stress tolerance. However, little information is currently available on the expression of the cowpea WRKY gene family (VuWRKY) in response to water deficit. Thus, we analyzed genomic and transcriptomic data from cowpea to identify VuWRKY members and characterize their structure and transcriptional response under root dehydration stress. Ninety-two complete VuWRKY genes were found in the cowpea genome based on their domain characteristics. They were clustered into three groups: I (15 members), II (58), and III (16), while three genes were unclassified. Domain analysis of the encoded proteins identified four major variants of the conserved heptapeptide motif WRKYGQK. In silico analysis of VuWRKY gene promoters identified eight candidate binding motifs of cis-regulatory elements, regulated mainly by six TF families associated with abiotic stress responses. Ninety-seven VuWRKY modulated splicing variants associated with 55 VuWRKY genes were identified via RNA-Seq analysis available at the Cowpea Genomics Consortium (CpGC) database. qPCR analyses showed that 22 genes are induced under root dehydration, with VuWRKY18, 21, and 75 exhibiting the most significant induction levels. Given their central role in activating signal transduction cascades in abiotic stress response, the data provide a foundation for the targeted modification of specific VuWRKY family members to improve drought tolerance in this important climate-resilient legume in the developing world and beyond.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available