4.7 Article

Structural properties of starch from single kernel of high-amylose maize

Journal

FOOD HYDROCOLLOIDS
Volume 124, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2021.107349

Keywords

High-amylose maize; Kernel; Starch; Molecular structure; Thermal properties; Principal component analysis

Funding

  1. Natural Science Foundation of Jiangsu Province [BK20210797]
  2. Postdoctoral Science Foundation of China [2020M681744]
  3. Talent Project of Yangzhou University
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions

Ask authors/readers for more resources

The study found that starches from kernels with different weights have varying amylose contents, amylopectin structures, and thermal properties, showing distinct relationships with each other.
Cereal grain weight is an important agronomic character, influencing crop yield and quality. The high-amylose cereals usually have grains with different weights. However, it is unclear whether starches from kernels with different weights have different structural properties. In the research, the amylose content, amylopectin structure, crystallinity, and thermal properties of single-kernel starch were investigated in two high-amylose maize inbred lines, and the relationship between amylose/amylopectin content and kernel weight and the differences of starches from kernels with different weights were analyzed. The results showed that kernel weight had significantly positive relationship with amylose content and amylopectin B3+ chains (DP > 36) and average branchchain length and negative relationship with amylopectin A chains (DP6-12) and B1 chains (DP13-24). The amylopectin A and B1 chains, relative crystallinity, and ordered degree had positive relationship with each other. The amylose content, amylopectin B3+ chains and average branch-chain length, and gelatinization temperature range were positively correlated with each other. Starches from kernels with different weights had different amylose contents, amylopectin structures, and thermal properties. The above results would offer references for breeding of high-amylose cereal crops and applications of grains with different weights.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available