4.4 Article

Pollutant dispersion by tall buildings: laboratory experiments and Large-Eddy Simulation

Journal

EXPERIMENTS IN FLUIDS
Volume 63, Issue 6, Pages -

Publisher

SPRINGER
DOI: 10.1007/s00348-022-03439-0

Keywords

-

Funding

  1. UKRI Future Leader's Fellowship
  2. UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China
  3. UK Fluids Network

Ask authors/readers for more resources

This study investigates the dispersion of pollutants by a tall-building cluster in a low-rise neighborhood of Beijing, using both full-scale Large-Eddy Simulation and water flume experiments. The results show that tall buildings have a strong influence on local flow and the development of the rooftop shear layer, and the incoming boundary layer thickness, pollutant source size, and laser-sheet thickness affect the measured flow field. Low-rise buildings around the tall building cluster cause minor but non-negligible offsets in peak magnitude and vertical location.
Pollutant dispersion by a tall-building cluster within a low-rise neighbourhood of Beijing is investigated using both full-scale Large-Eddy Simulation and water flume experiments at 1:2400 model-to-full scale with Particle Image Velocimetry and Planar Laser-Induced Fluorescence. The Large-Eddy Simulation and flume results of this realistic test case agree remarkably well despite differences in the inflow conditions and scale. Tall buildings have strong influence on the local flow and the development of the rooftop shear layer which dominates vertical momentum and scalar fluxes. Additional measurements using tall-buildings-only models at both 1:2400 and 1:4800 scales indicates the rooftop shear layer is insensitive to the scale. The relatively thicker incoming boundary layer affects the Reynolds stresses, the relative size of the pollutant source affects the concentration statistics and the relative laser-sheet thickness affects the spatially averaged results of the measured flow field. Low-rise buildings around the tall building cluster cause minor but non-negligible offsets in the peak magnitude and vertical location, and have a similar influence on the velocity and concentration statistics as the scale choice. These observations are generally applicable to pollutant dispersion of realistic tall building clusters in cities. The consistency between simulations and water tunnel experiments indicates the suitability of both methodologies. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available