4.7 Article

Glucose-mediated one-pot hydrothermal synthesis of hollow magnesium oxide-zinc oxide (MgO-ZnO) microspheres with enhanced natural sunlight photocatalytic activity

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 30, Issue 4, Pages 8512-8525

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-022-20283-1

Keywords

Composite; Semiconductors; Hydrothermal method; Natural sunlight; Photocatalysis

Ask authors/readers for more resources

Hollow spherical MgO-ZnO microstructures were synthesized using glucose-mediated one-pot hydrothermal method, and exhibited highly efficient photocatalytic degradation in the high-energy UV region of natural sunlight.
Glucose -mediated one-pot hydrothermal method has been utilized to synthesize hollow spherical MgO-ZnO (xMgO-(1-x)ZnO, x = 0, 0.2, 0.4, 0.6) microstructures which are highly efficient in high-energy ultraviolet (UV) region of natural sunlight. In this process, glucose formed roundish spheres, and simultaneously metal precursors were coated on that spheres during the hydrothermal reaction. X-ray diffraction analysis (XRD) supports the formation of highly crystalline wurtzite structure of MgO-ZnO for Mg loading less than 20%. Higher concentration of Mg produces wurtzite hexagonal ZnO and cubic MgO in the composites. The widening in band gap energy of synthesized MgO-ZnO microspheres compared to ZnO was analyzed by UV-visible diffuse reflectance spectroscopy (UV-DRS) result. Brunauer-Emmett-Teller (BET) surface area analysis showed that with the increase in Mg loading, the specific surface area increases up to 14.27 times as compared to pristine ZnO. The synthesized catalysts were used as an efficient photocatalyst towards the degradation of rhodamine B (RhB), methylene blue (MB), and phenol under natural solar irradiation. Results illustrated that MB and RhB dye solutions were 100% degraded by 0.6 MgO-ZnO in 100 min and 150 min, respectively, whereas pure ZnO samples showed only 65% and 79% degradation. Also, for phenol solution, 0.6 MgO-ZnO showed enhanced degradation efficiency of 72% in 240 min in comparison with 58% degradation shown by ZnO. Additionally, the MgO-ZnO catalysts were stable and showed excellent degradation efficiency up to four consecutive cycles which open a new direction towards potential industrial applications. Hence, the novelty of the current work is to prepare hollow MgO-ZnO microspheres by a single-step hydrothermal process where separate carbon template preparation is not required and to utilize these hollow microspheres as a highly efficient photocatalyst by harnessing the high-energy UV fraction of natural sunlight.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available