4.7 Article

Sea ice-free corridors for large swell to reach Antarctic ice shelves

Journal

ENVIRONMENTAL RESEARCH LETTERS
Volume 17, Issue 4, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1748-9326/ac5edd

Keywords

Antarctic ice shelves; ocean hindcast; swell-ice shelves interactions; sea ice-free corridors; sea ice concentration

Funding

  1. Australian Antarctic Science Program [4528]
  2. Australian Government Research Training Program Scholarship
  3. Australian Research Council [FT190100404, DP200102828]
  4. Australian Bureau of Meteorology
  5. Australian Government's Australian Antarctic Partnership Program
  6. Australian Antarctic Division
  7. Australian Research Council [FT190100404, DP200102828] Funding Source: Australian Research Council

Ask authors/readers for more resources

Sea ice can attenuate the impact of swell on Antarctic ice shelves, but certain ice shelves may still experience flexural stresses caused by large swell, exacerbating climate-driven weakening and decreased buttressing capacity, thus influencing sea-level rise.
Sea ice can attenuate Southern Ocean swell before it reaches Antarctic ice shelves and imposes flexural stresses, which promote calving of outer ice-shelf margins and influence ice shelf stability. An algorithm is developed to identify sea ice-free corridors that connect the open Southern Ocean to Antarctic ice shelves from daily satellite sea ice concentration data between September 1979 and August 2019. Large swell in the corridors available to impact the ice shelves is extracted from spectral wave model hindcast data. For a selection of ice shelves around the Antarctic coastline, corridors are assessed in terms of duration and areal extent. The availability of large swell to impact certain ice shelves through the corridors is evaluated from spectral wave data for daily statistical properties and the number of large swell days per year. Results integrated over a large number of ice shelves are used to assess overall trends. Large variations are found between individual ice shelves for both corridors and available swell, with contrasting trends between the West and East Antarctic Ice Sheet. The findings indicate ice shelves likely to experience prolonged periods of appreciable outer margin flexure due to large swell action, such as the Fimbul, Shackleton and Ross Ice Shelves, which could exacerbate climate-driven weakening and decreasing buttressing capacity, with implications for sea-level rise.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available