4.7 Article

Nanochitosan/carboxymethyl cellulose/TiO2 biocomposite for visible-light-induced photocatalytic degradation of crystal violet dye

Journal

ENVIRONMENTAL RESEARCH
Volume 204, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2021.112047

Keywords

Nanochitosan; Carboxymethyl cellulose; TiO2; Photocatalyst; Crystal violet; Dye degradation

Ask authors/readers for more resources

The study successfully synthesized a biocomposite-based nano-photocatalyst using sol-gel technique, which showed excellent photocatalytic performance in degrading crystal violet dye, achieving 95% degradation under visible light irradiation.
Development of novel bionanomaterials for water and wastewater treatment has gained increased attraction and attention in recent times. The present study reports an effective biocomposite-based nano-photocatalyst comprised of nanochitosan (NCS), carboxymethyl cellulose (CMC), and titanium dioxide (TiO2) synthesized by sol-gel technique. The as-prepared NCS/CMC/TiO2 photocatalyst was systematically characterized by X-ray diffraction, Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy with energy dispersive Xbeam spectroscopy, Differential scanning calorimetry (DSC), and Thermogravimetric analysis (TGA). Photocatalytic degradation of the crystal violet (CV) dye using this nano photocatalyst was studied by varying the irradiation time, catalyst dosage, feed pH, and initial dye concentration. Further, the kinetic analysis of dye degradation was explored using the Langmuir-Hinshelwood model, and a plausible photocatalytic mechanism was proposed. The modification of TiO2 using NCS and CMC accelerated photocurrent transport by increasing the number of photogenerated electrons and holes. Overall, the study indicated the excellent photocatalytic performance of 95% CV dye degradation by NCS/CMC/TiO2 than the bare inorganic TiO2 photocatalyst under visible light irradiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available