4.7 Article

Spatial distribution of microplastics in the tropical Indian Ocean based on laser direct infrared imaging and microwave-assisted matrix digestion

Journal

ENVIRONMENTAL POLLUTION
Volume 307, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2022.119547

Keywords

Large-scale microplastic study; Fractionated filtration; Quantum cascade laser; LDIR Imaging; One-pot digestion; Method development

Funding

  1. Institute of Membrane Research [03G0270A]
  2. BMBF [03G0270A]

Ask authors/readers for more resources

This study analyzed suspended particulate matter in the tropical Indian Ocean using a specialized filtration system and a novel microwave-assisted matrix removal and microplastic extraction protocol. The results demonstrate a high level of particulate plastic contamination compared to other open ocean regions, with a distinct spatial trend.
Suspended particulate matter was collected from subsurface (6 m) water along an E-W transect through the tropical Indian Ocean using a specialized inert (plastic free) fractionated filtration system. The samples were subjected to a new microwave-assisted one-pot matrix removal (efficiency: 94.3% +/- 0.3% (1 SD, n = 3)) and microplastic extraction protocol (recovery: 95% +/- 4%). The protocol enables a contamination-minimized digestion and requires only four filtration steps. In comparison, classical sample processing approaches involve up to eight filtration steps until the final analysis. Microplastics were identified and physically characterized by means of a novel quantum cascade laser-based imaging routine. LDIR imaging facilitates the analysis of up to 1000 particles/fibers (<300 mu m) within approximately 1-2 h. In comparison to FTIR and Raman imaging, it can help to circumvent uncertainties, e.g. from subsampling strategies due to long analysis and post-processing times of large datasets. Over 97% of all particles were correctly identified by the automated routine - without spectral reassignments. Moreover, 100% agreement was obtained between ATR-FTIR and LDIR-based analysis regarding particles and fibers >300 mu m. The mean microplastic concentration of the analyzed samples was 50 +/- 30 particles/fibers m(-3) (1 SD, n = 21). Number concentrations ranged from 8 to 132 particles/fibers m(-3) (20-300 mu m). The most abundant polymer clusters were acrylates/polyurethane/varnish (49%), polyethylene terephthalate (26%), polypropylene (8%), polyethylene (4%) and ethylene-vinyl acetate (4%). 96% of the microplastic particles had a diameter <100 mu m. Though inter-study comparison is difficult, the investigated area exhibits a high contamination with particulate plastics compared to other open ocean regions. A distinct spatial trend was observed with an increasing share of the size class 20-50 mu m from east to west.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available