4.7 Article

Quadrature-free immersed isogeometric analysis

Journal

ENGINEERING WITH COMPUTERS
Volume 38, Issue 5, Pages 4475-4499

Publisher

SPRINGER
DOI: 10.1007/s00366-022-01644-3

Keywords

Immersed methods; Computer-Aided Design; Isogeometric analysis; Quadrature-free

Funding

  1. EPFL Lausanne

Ask authors/readers for more resources

This paper presents a novel method for solving partial differential equations on three-dimensional CAD geometries using immersed isogeometric discretizations. The method does not require quadrature schemes and relies on analytical computations for polynomial integrals over spline boundary representations. Numerical experiments show that the proposed method achieves optimal error convergence order in 2D and 3D elliptic problems. The methodology is also illustrated on 3D CAD models with industrial-level complexity.
This paper presents a novel method for solving partial differential equations on three-dimensional CAD geometries by means of immersed isogeometric discretizations that do not require quadrature schemes. It relies on a newly developed technique for the evaluation of polynomial integrals over spline boundary representations that is exclusively based on analytical computations. First, through a consistent polynomial approximation step, the finite element operators of the Galerkin method are transformed into integrals involving only polynomial integrands. Then, by successive applications of the divergence theorem, those integrals over B-Reps are transformed into the first surface and then line integrals with polynomials integrands. Eventually, these line integrals are evaluated analytically with machine precision accuracy. The performance of the proposed method is demonstrated by means of numerical experiments in the context of 2D and 3D elliptic problems, retrieving optimal error convergence order in all cases. Finally, the methodology is illustrated for 3D CAD models with an industrial level of complexity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available