4.7 Article

Optimal solution of a general class of nonlinear system of fractional partial differential equations using hybrid functions

Journal

ENGINEERING WITH COMPUTERS
Volume 39, Issue 4, Pages 2401-2431

Publisher

SPRINGER
DOI: 10.1007/s00366-022-01627-4

Keywords

General class of nonlinear system of fractional partial differential equations; Hybrid method; Transcendental Bernstein series; Generalized shifted Chebyshev polynomials; Control parameters

Ask authors/readers for more resources

This paper introduces a general class of nonlinear system of fractional partial differential equations with initial and boundary conditions. A hybrid method based on the transcendental Bernstein series and the generalized shifted Chebyshev polynomials is proposed for finding the optimal solution of the nonlinear system of fractional partial differential equations. The solution of the nonlinear system of fractional partial differential equations is expanded in terms of the transcendental Bernstein series and the generalized shifted Chebyshev polynomials, as basis functions with unknown free coefficients and control parameters. The corresponding operational matrices of fractional derivatives are then derived for the basis functions. These basis functions, with their operational matrices of fractional order derivatives and the Lagrange multipliers, transform the problem into a nonlinear system of algebraic equations. By means of Darbo's fixed point theorem and Banach contraction principle, an existence result and a unique result for the solution of the nonlinear system of fractional partial differential equations are obtained, respectively. The convergence analysis is discussed and several illustrative experiments illustrate the efficiency and accuracy of the proposed method.
This paper introduces a general class of nonlinear system of fractional partial differential equations with initial and boundary conditions. A hybrid method based on the transcendental Bernstein series and the generalized shifted Chebyshev polynomials is proposed for finding the optimal solution of the nonlinear system of fractional partial differential equations. The solution of the nonlinear system of fractional partial differential equations is expanded in terms of the transcendental Bernstein series and the generalized shifted Chebyshev polynomials, as basis functions with unknown free coefficients and control parameters. The corresponding operational matrices of fractional derivatives are then derived for the basis functions. These basis functions, with their operational matrices of fractional order derivatives and the Lagrange multipliers, transform the problem into a nonlinear system of algebraic equations. By means of Darbo's fixed point theorem and Banach contraction principle, an existence result and a unique result for the solution of the nonlinear system of fractional partial differential equations are obtained, respectively. The convergence analysis is discussed and several illustrative experiments illustrate the efficiency and accuracy of the proposed method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available