4.7 Article

Dynamic stability of graded graphene reinforced truncated conical shells under both periodic spinning speeds and axial loads considering thermal effects

Journal

ENGINEERING STRUCTURES
Volume 256, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.engstruct.2022.113963

Keywords

Dynamic stability; Thermal sensitivity; Periodic spinning speed; Time-variable axial load; Graphene; Conical shells

Funding

  1. National Natural Science Foundation of China [12002225, 12002088, 11872319]

Ask authors/readers for more resources

This paper investigates the dynamic stability of graded graphene reinforced truncated conical shells under periodic spinning speeds and axial loads, taking into account thermal effects. The results demonstrate that the parameters of the graphene platelets, temperature variation, spinning speeds, and axial loads significantly influence the dynamic stability of the conical shell, and thermal expansion deformation and thermal conductivity are also important factors in the analysis of dynamic stability.
This paper is concerned with dynamic stability of graded graphene reinforced truncated conical shells under both periodic spinning speeds and axial loads considering thermal effects. The volume fraction of graphene platelets (GPLs) varies continuously along the shell's thickness direction, which induces the position-dependent effective material properties. Based upon Love's thin shell theory and Galerkin approach, the equations of motion of the conical shells are derived by considering thermal environment, both time-variable spinning speeds and axial loads. The method of multiple scales is adopted to obtain an analytical solution on the instability boundaries under combination parametric resonances. Then, comprehensive parametric studies are conducted focusing on the instability regions, natural frequencies and critical spinning speeds of the conical shell. The sensitivities of dynamic stabilities on the thermal expansion deformation, thermal conductivity and temperature-dependent material properties are also analyzed. Results show that the conical shell system would be always instability if parametric phase is not equal to integer multiple of pi. The GPL parameters, temperature variation, spinning speeds and axial loads have a significant influence on dynamic stability of the conical shell, and thermal conductivity and thermal expansion deformation are nonnegligible in the dynamic stability analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available