4.5 Article

Multi-Fidelity Combustor Design and Experimental Test for a Micro Gas Turbine System

Journal

ENERGIES
Volume 15, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/en15072342

Keywords

micro gas turbine; combustor; design; numerical analysis; experiment; performance

Categories

Funding

  1. Engineering and Physical Sciences Research Council (EPSRC) [EP/T004665/1]

Ask authors/readers for more resources

A multi-fidelity micro combustor design approach is developed for a small-scale combined heat and power system. This approach combines 3D high-fidelity modeling and experimental testing to provide a comprehensive design solution. Rapid design exploration is achieved through reduced-order models, followed by high-fidelity modeling for detailed flow and emission physics. The designed combustor is successfully implemented in the system and verified against test data. Numerical analysis is conducted to assess the potential operation of biogas, and a strategy is proposed to address flame stabilization challenges.
A multi-fidelity micro combustor design approach is developed for a small-scale combined heat and power CHP system. The approach is characterised by the coupling of the developed preliminary design model using the combined method of 3D high-fidelity modelling and experimental testing. The integrated multi-physics schemes and their underlying interactions are initially provided. During the preliminary design phase, the rapid design exploration is achieved by the coupled reduced-order models, where the details of the combustion chamber layout, flow distributions, and burner geometry are defined as well as basic combustor performance. The high-fidelity modelling approach is then followed to provide insights into detailed flow and emission physics, which explores the effect of design parameters and optimises the design. The combustor is then fabricated and assembled in the MGT test bench. The experimental test is performed and indicates that the designed combustor is successfully implemented in the MGT system. The multi-physics models are then verified and validated against the test data. The details of refinement on lower-order models are given based on the insights acquired by high-fidelity methods. The shortage of conventional fossil fuels and the continued demand for energy supplies have led to the development of a micro-turbine system running renewable fuels. Numerical analysis is then carried out to assess the potential operation of biogas in terms of emission and performance. It produces less NOx emission but presents a flame stabilisation design challenge at lower methane content. The details of the strategy to address the flame stabilisation are also provided.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available