4.5 Article

Analogies in the Analysis of the Thermal Status of Batteries and Internal Combustion Engines for Mobility

Journal

ENERGIES
Volume 15, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/en15072700

Keywords

battery; engine; thermal analysis; experiments; modeling

Categories

Ask authors/readers for more resources

Thermal management is crucial for the automotive industry to develop high-efficiency and low-impact future vehicles. This study investigates the similarities between the thermal behavior of engine components and batteries, providing insights into the thermal management of new mobility systems. Experimental investigations and modeling are conducted to analyze the thermodynamic processes involved in the operation, with the aim of understanding and improving the thermal control of batteries.
Thermal management is an important research area for the automotive sector in order to make high-efficiency and low-impact future vehicles. The transition from internal combustion engines to battery systems in the automotive field requires new skills to be achieved in the shortest possible time. The well-consolidated knowledge of thermal management of engine systems can be rearranged to face new challenges regarding the thermal control of batteries. The present work aims to show the analogies between the thermal behavior of an engine component, such as the piston, and of a battery. The thermodynamic processes involved during the operation are described, experimentally investigated, and modeled. The external temperature of the piston window is measured once per cycle with a K-type sheathed thermocouple, while the surface temperature of the battery is detected via infrared imaging. An almost-fixed stabilization time of 500 s is observed for the engine while it varies with the current load for the battery ranging from 1800 s to 3000 s, for the tested cases. Different temperature increments are also observed. Two mono-dimensional (1D) models of heat transfer are built using the finite-difference method. Good agreement with the experimental data is quantitatively demonstrated by a Normalize Root Mean Square Error lower than 0.07 for all the test cases and systems, except for the battery charging phase. The analysis of the temperature provides an estimation of the heat losses for the two systems, spanning from 15% to 27% for the engine and from 6% to 10% for the battery. The analysis carried out in this work can provide a methodology to understand and improve the thermal management of the new mobility system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available