4.5 Article

Analysis and Design of a Multi-Resonant Circuit for Applications of Wireless Capacitive Power Transmission

Journal

ENERGIES
Volume 15, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/en15062252

Keywords

multi-resonant circuits; CPT; LCLC circuit

Categories

Funding

  1. Instituto Politecnico Nacional [SIP-20210853]

Ask authors/readers for more resources

This paper presents an analysis and design methodology for applying the Z-tank resonant circuit to capacitive power transmission, overcoming the sensitivity of capacitive technology to distance between plates and achieving stable resonance frequency and high energy transfer.
Capacitive technology for wireless power transmission has been shown to be a good option for charging the batteries of electric vehicles. It offers better coupling between the transmitter and the receiver than inductive power transmission. On the other hand, it has some disadvantages; for example, it is very sensitive to the distance between plates. Several ideas have recently been proposed to overcome this disadvantage. However, a proper analysis methodology is still lacking, as is a proper design procedure for the circuits used in capacitive transmission. In this paper, an analysis and design methodology is presented for applying the Z-tank resonant circuit to capacitive power transmission, and the theoretical design methodology is based on normalized equations with respect to the operating resonance frequency. The analysis methodology and design procedure result in a circuit where the resonance frequency remains constant despite changes in the distance between the capacitive plates. The simulation results validate the proposal; to ensure robust, realistic simulation results, parasitic elements were considered in all reactive components, and robust models were built for the switching elements, such as MOSFETs and diodes. The results show that the multi-resonant characteristic of the circuit achieves maximum energy transfer and high efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available