4.6 Article

Study on transmission coefficients anisotropy of gas diffusion layer in a proton exchange membrane fuel cell

Journal

ELECTROCHIMICA ACTA
Volume 414, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2022.140163

Keywords

Proton exchange membrane fuel cell; Gas diffusion layer; Transmission coefficients anisotropy; Performance

Funding

  1. National Natural Science Foundation of China [51976004]

Ask authors/readers for more resources

In this study, a three-dimensional, non-isothermal, two-phase agglomerate model considering the porosity difference of the gas diffusion layer was established, and numerical simulations were conducted to investigate the influence of different coefficients on the overall cell performance. The results showed that different coefficients have varying effects on the cell characteristics at different voltages.
Due to the internal fiber structure and extrusion in the assembly process of fuel cell, the gas diffusion layer presents various characteristics in different directions, which makes transmission coefficients show anisotropy and affects overall cell performance. In order to predict the performance and understand influence of coefficient anisotropy, a more accurate model should be found. In this work, a three-dimensional, non-isothermal, twophase agglomerate model considering the porosity difference of gas diffusion layer under rib and channel is established. The influence of conductivity, thermal conductivity, permeability and diffusion coefficient on overall cell performance is investigated by numerical simulation. The results show that diffusion coefficient anisotropy should be considered during numerical simulation when cell voltage is less than or equals to 0.5 V. The conductivity anisotropy should be taken into account when cell voltage is greater than 0.5 V. Compared with isotropic model, electron potential in cathode side increases and current density decreases for conductivity anisotropy model, cell temperature in thermal conductivity anisotropy model is higher, dissolved and liquid water content in permeability anisotropy model increase, local current density in diffusion coefficient anisotropy model is lower. The influence of each coefficient on cell characteristic is various at different voltages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available