4.7 Article

Characterization of vitellogenin concentration in male fathead minnow mucus compared to plasma, and liver mRNA

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 236, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2022.113428

Keywords

Gene expression; RT-qPCR; ELISA; Estrogenic compounds; Biomarkers; Biomonitoring

Funding

  1. Pegasus Technical Services

Ask authors/readers for more resources

This study characterized the VTG protein in male fathead minnow mucus compared to plasma and liver mRNA. The results showed that the induction kinetics of VTG protein concentration in mucus and plasma were similar, with a significant increase detected after 2 days of exposure in the mucus-based assay and after 7 days in the plasma-based assay.
The objective of this study was to characterize vitellogenin (VTG) protein in male fathead minnow (Pimephales promelas) mucus compared with more conventional measures in plasma and mRNA isolated from liver. To assess the intensity and duration of changes in mucus VTG concentrations, male fathead minnows were exposed to 17 alpha-ethinylestradiol (EE2) for 7 days with a subsequent depuration period of 14 days. The experiment was conducted in a flow-through system to maintain a consistent concentration of EE2 at a nominal EC50 concentration of 2.5 ng/L and high concentration of 10 ng/L as a positive control. Mucus, plasma and liver were sampled at regular intervals throughout the study. Relative abundance of vtg mRNA increased after 2 days of exposure and returned to control levels after 4 days of depuration. VTG protein concentration displayed similar induction kinetics in both mucus and plasma, however, it was found to be significantly increased after 2 days of exposure using the mucus-based assays and 7 days with the plasma-based assay. Significantly elevated levels of VTG were detected by both assays throughout the 14-day depuration period. The elimination of the laborious plasma collection step in the mucus-based workflow allowed sampling of smaller organisms where blood volume is limiting. It also resulted in significant gains in workflow efficiency, decreasing sampling time without loss of performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available