4.7 Article

Arsenic induces ferroptosis and acute lung injury through mtROS-mediated mitochondria-associated endoplasmic reticulum membrane dysfunction

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 238, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2022.113595

Keywords

Arsenic; Ferroptosis; PERK; Mitofusin-2; MtROS; Acute lung injury

Funding

  1. National Natural Science Foundation of China [82100078, 81930093]
  2. Anhui Provincial Natural Science Foundation [2008085J38]
  3. National Natural Science Foundation Incubation Program of the Second Affiliated Hos-pital of Anhui Medical University [2020GQFY05]
  4. Scientific Research of Health Commission in Anhui Province

Ask authors/readers for more resources

This study found that dysfunction of mitochondria-associated endoplasmic reticulum membrane (MAMs) is involved in arsenic-induced pulmonary ferroptosis and acute lung injury (ALI).
The goal of this study was to analyze whether mitochondria-associated endoplasmic reticulum membrane (MAMs) dysfunction mediated arsenic (As)-evoked pulmonary ferroptosis and acute lung injury (ALI). As exposure led to alveolar structure damage, inflammatory cell infiltration and pulmonary function decline in mice. Ferritin, the marker of iron overload, was increased, GPX4, the index of lipid peroxidation, was decreased in As-exposed lungs and pulmonary epithelial cells (MLE-12). Pretreatment with ferrostatin-1 (Fer-1), the inhibitor of ferroptosis, alleviated As-evoked ALI. In addition, As-induced non-heme iron deposition was inhibited in Fer-1 pretreated-mice. Moreover, As-triggered mitochondria damage and ferroptosis were mitigated in Fer-1 pretreated-MLE-12 cells. Mechanistically, PERK phosphorylation and mitofusin-2 (Mfn-2) reduction was observed in As-exposed MLE-12 cells and mice lungs. Additionally, the interaction between PERK and Mfn-2 was downregulated and MAMs dysfunction was observed in As-exposed MLE-12 cells. Intriguingly, PERK inhibitor and Mfn-2-overexpression all mitigated As-induced ferroptosis in MLE-12 cells. Additionally, CLPP and mtHSP70, the markers of mitochondrial stress, were upregulated, mitochondrial ROS (mtROS) was elevated, mitochondrial membrane potential (MMP) and ATP were decreased in As-exposed MLE-12 cells. Mitoquinone mesylate (MitoQ), a novel mitochondrial-targeted antioxidant, alleviated As-induced excess mtROS, mitochondrial stress, MAMs dysfunction in pulmonary epithelial cells. Similarly, in vivo experiments indicated that MitoQ pretreatment countered As-induced pulmonary ferroptosis and ALI. These data indicated that mtROS-initiated MAMs dysfunction is, at least partially, implicated in As-evoked ferroptosis and ALI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available